Correspondence Estimation in Human Face and Posture Images

Detta är en avhandling från Stockholm, Sweden : KTH Royal Institute of Technology

Sammanfattning: Many computer vision tasks such as object detection, pose estimation,and alignment are directly related to the estimation of correspondences overinstances of an object class. Other tasks such as image classification andverification if not completely solved can largely benefit from correspondenceestimation. This thesis presents practical approaches for tackling the corre-spondence estimation problem with an emphasis on deformable objects.Different methods presented in this thesis greatly vary in details but theyall use a combination of generative and discriminative modeling to estimatethe correspondences from input images in an efficient manner. While themethods described in this work are generic and can be applied to any object,two classes of objects of high importance namely human body and faces arethe subjects of our experimentations.When dealing with human body, we are mostly interested in estimating asparse set of landmarks – specifically we are interested in locating the bodyjoints. We use pictorial structures to model the articulation of the body partsgeneratively and learn efficient discriminative models to localize the parts inthe image. This is a common approach explored by many previous works. Wefurther extend this hybrid approach by introducing higher order terms to dealwith the double-counting problem and provide an algorithm for solving theresulting non-convex problem efficiently. In another work we explore the areaof multi-view pose estimation where we have multiple calibrated cameras andwe are interested in determining the pose of a person in 3D by aggregating2D information. This is done efficiently by discretizing the 3D search spaceand use the 3D pictorial structures model to perform the inference.In contrast to the human body, faces have a much more rigid structureand it is relatively easy to detect the major parts of the face such as eyes,nose and mouth, but performing dense correspondence estimation on facesunder various poses and lighting conditions is still challenging. In a first workwe deal with this variation by partitioning the face into multiple parts andlearning separate regressors for each part. In another work we take a fullydiscriminative approach and learn a global regressor from image to landmarksbut to deal with insufficiency of training data we augment it by a large numberof synthetic images. While we have shown great performance on the standardface datasets for performing correspondence estimation, in many scenariosthe RGB signal gets distorted as a result of poor lighting conditions andbecomes almost unusable. This problem is addressed in another work wherewe explore use of depth signal for dense correspondence estimation. Hereagain a hybrid generative/discriminative approach is used to perform accuratecorrespondence estimation in real-time.