Dynamic Modeling of Hydropower Generators

Sammanfattning: Modeling the dynamics of hydropower generators has been the aim pursued by many studies, as providing a reliable model would lead to more cost-effective designs. Hydropower generators comprise many parts, tilting-pad bearings, shaft, rotor rim, and stator among them, that contribute to the system's nonlinearities. In this thesis, the dynamics of hydropower generator is studied first by characterizing tilting-pad bearings. Multiple pad bearings are common in the industry; an eight-pad tilting-pad bearing has been studied on vertical rotors. Previous studies have shown that multiple pad bearings display stiffness and damping coefficients dependent on eccentricity and position. A model for eight-pad tilting pad bearings has been proposed and compared to experiments. The effect of cross-coupled phenomena was also investigated.On the other hand, the generators are not rigid bodies, and the flexibility of either rotor rim or stator influences the distribution of the magnetic field, thus the force distribution. An uneven force distribution endangers the integrity of the machine. This thesis also proposes a model for a generator with flexible rotor rims and rigid stators using Lagrange equations, considering the centrifugal and Coriolis effects, the electromagnetic interaction between rotor and stator, and static and dynamic eccentricities. This model was tried on a generator prototype, discussing the impact of the connecting plates and the magnetic forces on the natural frequencies and the effect of static eccentricity.

  Denna avhandling är EVENTUELLT nedladdningsbar som PDF. Kolla denna länk för att se om den går att ladda ner.