Modeling lichen performance in relation to climate : scaling from thalli to landscapes

Sammanfattning: Lichens can colonize nearly all terrestrial habitats on earth and are functionally important in many ecosystems. Being poikilohydric, their active growth periods are restricted to periods when the thallus is hydrated from atmospheric water sources, such as rain, fog and high relative humidity. Since lichen hydration varies greatly over time lichen growth is therefore more difficult to model compared with, for example vascular plants with more even water supply. I developed two models to predict lichen hydration under field conditions that incorporates the atmospheric water potential (Ψair), derived from air temperature and humidity, only or in combination with species-specific rehydration and desiccation rates. Using Ψair allows the prediction of hydration induced by several water sources. These models were very accurate for epiphytic lichens with a close coupling to atmospheric conditions, but they were less accurate for mat-forming lichens with substantial aerodynamic boundary layers. The hydration model was further developed to include photosynthetic activation for different species, in order to compare their performance under different micro-climatic scenarios. Water balance and activation rate had large effects on lichen activity and were positively related to habitats providing long hydration periods, for example close to streams. To study effects of climate change, a complete model for net carbon gain (photosynthesis minus respiratory losses) was developed for an epiphytic lichen with intricate responses to light, hydration and temperature. Simulation responses in different climate scenarios revealed that projected climate change on a regional scale resulted in varied local scale responses. At the lighter, exposed sites of a forest, the growth responses were positive, but were potentially negative at darker sites with closed canopy. At the local scale, fluctuating hydration, summed irradiance when wet and Chlorophyll a are variables that predict lichen growth. However, at a landscape scale, these variables may be too detailed. We tested this for two terrestrial, mat-forming lichens and developed statistical models for lichen growth in the widest possible climatic gradient in northern Scandinavia, varying in light, temperature and precipitation. Light was the most important factor for high growth at the landscape scale, reaching saturation at a site openness of 40 %, equivalent to a basal tree area of 15 m2 ha -1 in this study. Thereafter, hydration was the next limiting factor, which could be well described by precipitation for one of the species. The simplest predictor was the normal temperature in July, which was negatively correlated with growth. It was apparent that the predictive variables and their power varied at different scales. However, light and hydration are limiting at all scales, particularly by light conditions when lichens are wet. This implies that ensuring that there is sufficient light below the forest canopy is crucial for lichen growth, especially for mat-forming lichens. Hydrophilic lichens may be better preserved in open habitats with long hydration periods. It was shown that models can be powerful and “easy to use” tools to predict lichen responses in various habitats and under different climate scenarios. Models can therefore help to identify suitable habitats with optimal growth conditions, which is very important for the conservation and management of lichens and their habitats.

  KLICKA HÄR FÖR ATT SE AVHANDLINGEN I FULLTEXT. (PDF-format)