Inter and Intra-Assemblage Characterizations of Giardia intestinalis: from clinic to genome

Detta är en avhandling från Uppsala : Acta Universitatis Upsaliensis

Sammanfattning: The protozoan parasite Giardia intestinalis (syn. G. lamblia, G. duodenalis) is one of the most common causes of diarrheal disease throughout the world, where an estimated 500 million people are infected annually. Despite efforts in trying to elucidate factors associated with virulence in G. intestinalis little is currently known. The disease outcome is highly variable in Giardia infected individuals, ranging from asymptomatic carriers to severe disease. The reasons behind the differences in disease outcome are vaguely understood and studies trying to link infectivity to different Giardia assemblages or sub-assemblages have rendered conflicting results. Prior to this study, little was known about the prevalence and genetic diversity of different G. intestinalis assemblages across the world.In this thesis, molecular characterization of clinical G. intestinalis samples from Eastern Africa and Central America, has been performed, enabling a better understanding of the prevalence of different Giardia genotypes in endemic areas (Papers I and II). A correlation between Giardia colonization and the presence of Helicobacter pylori in the human host was established. We found that the currently available genotyping tools provide low resolution when used to characterize assemblage A Giardia. Also, genotyping of assemblage B isolates at these loci is troublesome due to the polymorphic substitutions frequently found in the sequencing chromatograms. This ambiguity was investigated by using micromanipulation to isolate single assemblage B Giardia cells (Paper III). Both cultured trophozoites and cysts from giardiasis patients were analyzed. The data showed that allelic sequence heterozygosity (ASH) does occur at the single cell level, but also that multiple sub-assemblage infections appear to be common in human giardiasis patients.Furthermore, genome-wide sequencing followed by comparative genomics was performed in order to better characterize differences between and within different Giardia assemblages. The genome of a non-human infecting, assemblage E isolate (Paper IV) was sequenced.  The genomes of two freshly isolated human infecting assemblage AII isolates were also sequenced (Paper V). Subsequent, comparative analyses were performed and included the genomes of two human infecting isolates, WB (AI) and GS/M (B). Several important differences were found between assemblages A, B and E, but also within assemblage A; including unique gene repertoires for each isolate, observed differences in the variable gene families and an overall difference in ASH between the different isolates. Also, a new multi-locus genotyping (MLG) strategy for genotyping of assemblage A Giardia has been established and evaluated on clinical samples from human giardiasis patients.