Wearable Solutions for P-Health at Work : Precise, Pervasive and Preventive

Sammanfattning: With a demographic change towards an older population, the structure of the labor force is shifting, and people are expected to work longer within their extended life span. However, for many people, wellbeing has been compromised by work-related problems before they reach the retirement age. Prevention of chronic diseases such as cardiovascular diseases and musculoskeletal disorders is needed to provide a sustainable working life. Therefore, pervasive tools for risk assessment and intervention are needed. The vision is to use wearable technologies to promote a sustainable work life, to be more detailed, to develop a system that integrates wearable technologies into workwear to provide pervasive and precise occupational disease prevention. This thesis presents some efforts towards this vision, including system-level design for a wearable risk assessment and intervention system, as well as specific insight into solutions for in-field assessment of physical workload and technologies to make smart sensing garments. The overall system is capable of providing unobtrusive monitoring of several signs, automatically estimating risk levels and giving feedback and reports to different stakeholders. The performance and usability of current energy expenditure estimation methods based on heart rate monitors and accelerometers were examined in occupational scenarios. The usefulness of impedance pneumography-based respiration monitoring for energy expenditure estimation was explored. A method that integrates heart rate, respiration and motion information using a neuronal network for enhancing the estimation is shown. The sensing garment is an essential component of the wearable system. Smart textile solutions that improve the performance, usability and manufacturability of sensing garments, including solutions for wiring and textile-electronics interconnection as well as an overall garment design that utilizes different technologies, are demonstrated.