Cobalt and Nickel Bioavailability for Biogas Formation

Detta är en avhandling från Linköping : Linköping University Electronic Press

Sammanfattning: Supplementation of trace metals such as Co and Ni may improve anaerobic digestion of organic material for biogas formation. Which trace metals that are needed and the quantity to apply are, at least partly, related to metal speciation and bioavailability. According to the common perception, metals have to be dissolved to be available for microbial uptake. However, the impact of trace metal speciation on bioavailability is still unclear. The purpose of the present study was to investigate the effect of Fe-, Co- and Ni-addition on the biogas process performance of stillage-fed lab-scale biogas tank reactors. Metal speciation was determined by sequential extraction (SE), extraction of acid volatile sulfides (AVS) and continuously extracted metals (AVS-Me). Sulfur forms, which may be associated to metal speciation, were studied with S XANES (sulfur X-ray absorption near edge structure). The effect of different Co- and Ni-concentrations on process microflora composition was examined with quantitative PCR (qPCR) and 454-pyrosequencing.The results showed that Co- and Ni-supplementation stimulated and stabilized the biogas process performance by increasing methane production and substrate utilization and by establishing low concentrations of volatile fatty acids. 10-20% of the total Co-amount was found in the dissolved phase, which shows that Co was relatively available for microbial uptake. Nickel was entirely associated to organic matter/sulfides and AVS, and was therefore considered to be non-bioavailable. Nevertheless, Ni-supplementation had stimulatory effects on the biogas process performance. This implies that Ni was available for microbial uptake despite its extensive association to sulfides and that other mechanisms than solubility govern the availability of this trace metal. The microbial analyzes revealed that it was primarily the methane producers which were affected by the concentration of Co and Ni. At stimulatory Co- and Ni-concentrations, the archaeal methanogenic community was dominated by aceticlastic Methanosarcinales. At lower Co- or Ni-levels, when biogas process performance was poor, an increase in hydrogenotrophic Methanomicrobiales was observed. This indicates a shift in the methanogenic flora, from being dominated by acetate utilizers to increased importance of hydrogen utilizers, and that the former was more dependent on Co and Ni.

  Denna avhandling är EVENTUELLT nedladdningsbar som PDF. Kolla denna länk för att se om den går att ladda ner.