On the Versatility of Microwave-Assisted Chemistry Exemplified by Applications in Medicinal Chemistry, Heterocyclic Chemistry and Biochemistry

Detta är en avhandling från Uppsala : Acta Universitatis Upsaliensis

Sammanfattning: Today, the demand for speed in drug discovery is constantly increasing, particularly in the iterative processes of hit validation and expansion and lead optimization. Irradiation with microwaves (MWs) has been applied in the area of organic synthesis to accelerate chemical reactions and to facilitate the generation of new chemical entities since 1986. In the work presented in this thesis, the use of MW-mediated heating has been expanded to address three fields of drug discovery, namely hit expansion, chemical library generation and genomics.In the first project, potential inhibitors of malaria aspartic proteases were designed and synthesized, partly by MW-assisted organic chemistry, and evaluated with regard to their inhibitory efficacy on five malaria aspartic proteases and their selectivity over two human aspartic proteases. The synthetic work included the development of fast and convenient methods of MW-assisted formation of thiazolidines and epoxy esters. Some of the resulting structures proved to be efficacious inhibitors of the aspartic protease that degrades haemoglobin in all four malaria parasites infecting man. No inhibitor affected the human aspartic proteases.Expedient, two-step, single-operation synthetic routes to heterocycles of medicinal interest were developed in the second and third projects. In the former, the use of a versatile synthon, Ph3PCCO, provided ?,?-unsaturated lactones, lactams and amides within 5–10 minutes. In the latter project, saturated lactams were formed from amines and lactones in 35 minutes, in the absence of strong additives. These two MW-mediated protocols allowed the reduction of the reaction time from several hours or days to minutes.In the fourth project, a fully automated MW-assisted protocol for the important enzyme-catalysed polymerase chain reaction (PCR) was established. In addition, the PCR reaction could be performed in unusually large volumes, 2.5 mL and 15 mL, with yields corresponding to those from conventional PCR. Good amplification rates suggested that the thermophilic enzyme, Taq polymerase, was not affected by the MW radiation.

  KLICKA HÄR FÖR ATT SE AVHANDLINGEN I FULLTEXT. (PDF-format)