Performance, Processing and Perception of Communicative Motion for Avatars and Agents

Detta är en avhandling från Stockholm : KTH Royal Institute of Technology

Sammanfattning: Artificial agents and avatars are designed with a large variety of face and body configurations. Some of these (such as virtual characters in films) may be highly realistic and human-like, while others (such as social robots) have considerably more limited expressive means. In both cases, human motion serves as the model and inspiration for the non-verbal behavior displayed. This thesis focuses on increasing the expressive capacities of artificial agents and avatars using two main strategies: 1) improving the automatic capturing of the most communicative areas for human communication, namely the face and the fingers, and 2) increasing communication clarity by proposing novel ways of eliciting clear and readable non-verbal behavior.The first part of the thesis covers automatic methods for capturing and processing motion data. In paper A, we propose a novel dual sensor method for capturing hands and fingers using optical motion capture in combination with low-cost instrumented gloves. The approach circumvents the main problems with marker-based systems and glove-based systems, and it is demonstrated and evaluated on a key-word signing avatar. In paper B, we propose a robust method for automatic labeling of sparse, non-rigid motion capture marker sets, and we evaluate it on a variety of marker configurations for finger and facial capture. In paper C, we propose an automatic method for annotating hand gestures using Hierarchical Hidden Markov Models (HHMMs).The second part of the thesis covers studies on creating and evaluating multimodal databases with clear and exaggerated motion. The main idea is that this type of motion is appropriate for agents under certain communicative situations (such as noisy environments) or for agents with reduced expressive degrees of freedom (such as humanoid robots). In paper D, we record motion capture data for a virtual talking head with variable articulation style (normal-to-over articulated). In paper E, we use techniques from mime acting to generate clear non-verbal expressions custom tailored for three agent embodiments (face-and-body, face-only and body-only).