Interaction strength and responses of ecological communities to disturbances

Detta är en avhandling från Institutionen för fysik, kemi och biologi

Sammanfattning: Ecological communities are continuously exposed to natural or anthropogenic disturbances of varied intensity and frequency. The way communities respond to disturbances can depend on various factors, such as number of species, structural characteristics of the community, stability properties, species characteristics and the nature of the disturbance. This thesis is a collection of theoretical studies on how ecological communities respond to different kind of disturbances, mainly in relation to interaction strength between species, a measure of how strongly or weakly species interact with each other.A major disturbance for natural communities is the loss of a species. Although species extinctions is a natural process in the geological time scale, it has lately been dangerously accelerated due to human activities and interferences. Extinction of a species can have dramatic consequences for the community, can trigger a cascade of secondary species extinction and can even lead to community collapse. In Paper I, we identify species whose loss can trigger a large number of secondary extinctions (namely keystone species), species that are particularly vulnerable to become extinct following the loss of another species and mechanisms behind the sequence of secondary extinctions. We also highlight the fact that the keystone status of a species can be context dependent, that is, it is dependent on the structure of the community where it is embedded.Although the global extinction of a species is an irreversible process, in cases of local extinction, conservation and restoration plans can include reintroduction of the species to their former location. Such reintroduction or translocation attempts often fail, due to characteristics of the reintroduced species and to changes in the community structure caused by the initial loss of the species (Paper II ). Using model communities we show that this risk of reintroduction failure can be high - even in cases where the initial species loss did not cause any secondary extinctions - and it differs between attempts to reintroduce weakly or strongly interacting species (Paper II ).Disturbances are not always as profound as species extinction. Human activities and environmental changes can cause small and permanent changes in birth and mortality rates of species and in the strength of interaction between species. Such disturbances can change the stability properties of ecological communities making them more vulnerable to further disturbances. In Paper III, we derive analytical expressions for the sensitivity of resilience to changes in the intrinsic growth rate of species and in the strength of interaction links. We also apply the method to model communities and identify keystone species and links, i.e. species and links whose small disturbance would cause large changes in community resilience. We found that changes in the growth rate of strongly interacting species have a larger impact on resilience than changes in the growth rate of weakly interacting species, which is in line with the main findings of the species deletion study (Paper I ).Community complexity - mainly expressed as number of species and links - was one of the first community characteristics to be related to stability properties and the way communities respond to disturbances. Many theoretical works support the hypothesis that complexity reduces stability, contradicting intuition, observation and many experimental studies. In Paper IV, we state that this could be, at least partly, due to methodological misconceptions and misinterpretations. We propose a new sampling method for parameterizing model communities and we highlight the importance of feasibility of model communities (all species densities are strictly positive), for a more proper estimation of stability probability of communities with different degrees of complexity.

  Denna avhandling är EVENTUELLT nedladdningsbar som PDF. Kolla denna länk för att se om den går att ladda ner.