Degradation of rock and shotcrete due to ice pressure and frost shattering

Sammanfattning: In recent years the Swedish Rail Administration has observed an increased incidence of shotcrete and rock fall-outs in its tunnels, for which reason it has initiated several research projects, of which the present project entitled "Degradation of rock and shotcrete due to ice pressure and frost shattering" is one. The aim of this licentiate project was to bring together experience and information relating to ice formation and the effect of ice pressure on fault zones, cracks and, in particular, the shotcrete/rock interface. Furthermore, the hypothesis from the literature review is tested and the results of the laboratory tests are presented. When water freezes, a 9 % volumetric expansion occurs according to the phase transition into ice. This can exert a pressure on the adjacent material. If this ice pressure exceeds the tensile strength of the adjacent material or the adhesive strength of the shotcrete/rock interface, the material will be damaged. The degree of damage depends, among other factors, on the degree of saturation of the material. A partially saturated material can resist breakage despite its low tensile strength, because ice expansion and pore-water distribution can occur in pores which were initially filled with air. A fully saturated material however yields to frost action regardless of its tensile strength, because it has none of the free space this expansion requires. Volumetric expansion is not the only cause of frost shattering and research shows that the frost action in rocks is the same as in soils, when the rock has access to water during freezing. In soil, water is drawn towards the frozen fringe and causes ice lenses to grow. In a similar manner water tends to migrate in rock and causes ice bodies to grow inside pores and cracks. This water migration takes place because a thin film of adsorbed water occurs at the surface of mineral particles and it is in this water film that water is able to migrate towards the frozen zones. Experimental work has shown that a considerable amount of adsorbed water remains unfrozen at sub-zero temperatures not only in soils, but also in rocks, which enable water migration. Water migration and ice growth thus depend not only on access to water and freezing temperatures, but also on the duration of these temperatures and the freezing rate. If rock or shotcrete is subjected to rapid freezing, the thickness of the water film is quickly reduced and the water migration is inhibited, which limits frost damages to rock and shotcrete. By contrast, a slow freezing allows water migration to occur over a longer period, which can result in greater frost damage to rock and shotcrete. The field investigations found changes to the freezing periods as well as their duration to be of major importance to ice formation growth. If the freezing period was of long duration, several of the cracks and the leakage spots freeze. If leakage is subjected instead to short periods of freezing and thawing, the water in the crack will never freeze and will continue to leak, resulting in ice formation growth. In cold areas, such as the north of Sweden, this problem takes place even far inside the tunnels. This phenomenon occurs because the leakage water transports heat from the rock mass to the cold tunnel wall. The heat content of the water keeps the rock around the crack opening from freezing despite sub-zero tunnel air temperatures. Hence, the leakage spot will continue to leak, until a certain temperature and temperature duration is achieved, which results in ice formations when the water meets the cold tunnel air. Another experience in the field investigations was that the rock and shotcrete fall-outs often occurred in areas with leakage problems. The results of the laboratory tests performed in this licentiate project also show that water in combination with freezing temperature can cause degradation problems. The tensile tests undertaken, showed that the adhesive strength decreased about 50 % when the shotcrete/rock samples had been subjected to freeze-thaw cycles. Furthermore, acoustic emission measurements (AE) showed that more events took place when the shotcrete/rock panels had access to free water during freezing. The literature review, field investigations of railway tunnels and the laboratory tests shows that access to water during freezing can cause damage to the shotcrete/rock interface. This confirms the hypothesis that shotcrete and rock fall-outs can occur because ice pressure in a crack or at the interface exceeds the tensile strength of the material or the adhesive strength between rock and shotcrete. One thing that the laboratory tests failed to provide a satisfactory answer to, was whether these fall-outs could occur due to widening of an initially small area of poor adhesion around a rock crack opening. However, the laboratory test showed a lot of activity during freezing in those areas prepared with poor adhesion. It thus it appears that small areas of poor adhesion in some way affect deterioration of the adhesive strength of the shotcrete/rock interface.

  Denna avhandling är EVENTUELLT nedladdningsbar som PDF. Kolla denna länk för att se om den går att ladda ner.