Local Purinergic Control of Arteriolar Reactivity in Pancreatic Islets and Renal Glomeruli

Detta är en avhandling från Uppsala : Acta Universitatis Upsaliensis

Sammanfattning: Local control of regional blood flow is exerted mainly through the arterioles. An adequate minute-to-minute regulation of blood perfusion of the kidney and the pancreas is obtained by the modulation of arteriolar reactivity, which will influence the organ function. The importance of purinergic signaling in this concept has been addressed, with special emphasis on the role of the adenosine A1 receptor. The effects of adenosine on two specialized vascular beds, namely the renal glomerulus and the pancreatic islets, have been examined. Characteristic for these regional circulations is their very high basal blood flow, but with somewhat different responses to vasoconstrictor and vasodilator stimuli. By adapting a unique microperfusion technique it was possible to separately perfuse isolated single mouse arterioles with attached glomeruli or pancreatic islets ex vivo. Microvascular responses were investigated following different additions to the perfusion fluid to directly examine the degree of dilation or constriction of the arterioles. This has been performed on transgenic animals in this thesis, e.g. A1 receptor knockout mice. Also effects of P2Y receptors on islet arterioles were examined in both normoglycemic and type 2 diabetic rats. Furthermore, interference with adenosine transport in glomerular arterioles were examined.. Our studies demonstrate important, yet complex, effects of adenosine and nucleotide signaling on renal and islet microvascular function, which in turn may influence both cardiovascular and metabolic regulations. They highlight the need for further studies of other purinergic receptors in this context, studies that are at currently being investigated.

  KLICKA HÄR FÖR ATT SE AVHANDLINGEN I FULLTEXT. (PDF-format)