The Alnö alkaline and carbonatitic complex, east central Sweden - a petrogenetic study

Detta är en avhandling från Stockholm : Institutionen för geologi och geokemi

Sammanfattning: The Alnö complex on the central Swedish east coast is composed of a main composite intrusion (the main intrusion) and four smaller satellite intrusions (Söråker, Sälskär, Långharsholmen and Båräng) distributed around the main intrusion on Alnö Island and on the mainland north of the island. The major rock types exposed within the complex are melilitolite, pyroxenite, ijolite series (melteigite-ijolite-urtite), nepheline syenite, carbonatite and alnöite dykes. Melilitolite is only exposed within the Söråker intrusion. The intrusive sequence is melilitolite → pyroxenite → ijolite series → nepheline syenite → carbonatite → alnöite.Mineralogical, whole rock geochemical and radiogenic isotope (Nd-Sr-Pb) studies of exposed rocks from the Alnö alkaline complex, east central Sweden, were performed in order to investigate the genetic relationships between the diverse rock-types, and to evaluate the contributions from mantle and crustal components in the genesis of the complex. Most analysed samples fall within the depleted quadrant in a eNd-eSr diagram, similar to carbonatites and alkaline silicate rocks from other complexes, indicating derivation of parental magma(s) from a source that had experienced time-integrated depletion in LIL elements. Contamination by local crust is indicated by Sr and Pb isotope data, but is geographically restricted to samples collected from the outer parts of the main intrusion and from satellite intrusions. This localized contamination is attributed to selective hydrothermal element leaching of surrounding bedrock during fenitization. Nd- and Sr-isotope data separates the carbonatites into two groups (group I and II), each related to a specific set of silicate rock types. The overlap of group II carbonatites with ijolite and nepheline syenite could indicate a common origin through liquid immiscibility but this hypothesis cannot be confirmed by trace element data because initial concentrations are obscured by fractionation processes. Interestingly, results from AFC-modelling suggest that production of ijolite residual magma requires addition of a small volume (2.4 %) of carbonatite component to the parental magma, whereas formation of nepheline syenite residuals requires removal of an almost equal amount of carbonatite (1.5 %) to yield a statistically significant result. AFC-modelling further suggests that the various silicate rock types exposed within the complex are related to the same parental olivine-melilitite magma through crystal fractionation of olivine, melilite, clinopyroxene, nepheline, Ti-andradite and minor phases. These results agree with compositional trends exhibited by clinopyroxene and Ti-andradite from the silicate rocks of the main intrusion, which suggests co-genesis of pyroxenite, ijolite series rocks and nepheline syenite. Production of ijolite-like residual liquids can be achieved by <40% fractionation whereas production of nepheline syenite residuals requires >80% fractionation.An investigation of the origin of silicate minerals in carbonatites suggest that most silicate minerals observed in the carbonatites on Alnö Island are derived from surrounding wall-rock and/or produced through corrosive interaction between carbonatite liquid and assimilated phases. This leads to ambiguities when addressing the possible genetic link between carbonatites and associated silicate rocks as occurrences of identical “liquidus” phases in inferred immiscible liquids may not actually be such.

  HÄR KAN DU HÄMTA AVHANDLINGEN I FULLTEXT. (följ länken till nästa sida)