Strength and Moisture Aspects of Steel Timber Dowel Joints in Glulam Structures An Experimental and Numerical Study

Detta är en avhandling från Växjö : Växjö University Press

Sammanfattning: Joints are critical parts of timber structures, transmitting static and dynamic forces between structural members. The ultimate behavior of e.g. a building depends strongly on the structural configuration and the capacity of its joints. The complete collapse of a building or other less extensive accidents that may occur usually start as a local failure inside or in the vicinity of a joint. Such serious failures have recently occurred in the Nordic countries. Especially the collapses of two large glued-laminated timber (glulam) structures clearly indicate the need of an improved joint design. The trend toward larger and more complex structures even further increases the importance of a safer design of the joints.One aim of this partly experimentally and partly numerically based work has been to investigate if the short term capacity of steel-timber dowel joints loaded parallel to the grain is affected by an initial drying exposure. The experimental results showed that the load-bearing capacity of the joints is indeed reduced by such moisture changes. Moisture induced stresses was mentioned to be the explanation. The key point is that the climates chosen in the present work (20°C / 65% RH and 20°C / 20% RH) are equivalent to service class 1 according to EC5 (Eurocode 5 2004). Thus, EC5 predicts no decrease in load-bearing capacity, in relation to the standard climate used during testing. A decrease in load-bearing capacity in the range of 5-20%, which was found in the present work, is of course not negligible and, therefore, there could be a need to introduce the effect of drying in design codes. Because similar results were also observed for a double-tapered glulam beam, further work should consider timber structures in general.Two numerical methods in order to predict the capacity of multiple steel-timber dowel joints loaded parallel to the grain were tested in the thesis. For the first method, where fracture mechanics (LEFM) concepts were implemented, a good correlation with the experimental results was seen. Also for the second method, where the capacity for a single dowel-type joint as given in EC5 was used as a failure criterion, a good correlation to traditional EC5 calculations of multiple dowel-type joints was seen. One advantage of using numerical methods in design is that the capacity of the joint can be calculated also for cases when the dowels are placed in more complex patterns. From both a structural and an architectural point of view this can be very important. In addition, such numerical methods are effective tools for the structural engineer when considering complicated loading situations in joints, i.e. eccentric loading giving moments in the joint.

  KLICKA HÄR FÖR ATT SE AVHANDLINGEN I FULLTEXT. (PDF-format)