Some aspects of the Atlantic ocean circulation

Detta är en avhandling från Stockholm : Meteorologiska institutionen (MISU)

Sammanfattning: The present thesis deals with the ocean circulation from two viewpoints: Pro primo, the dependence of the global thermohaline ocean circulation (THC) on the parameterization of the small-scale vertical mixing processes in the interior of the ocean, and, pro secundo, the dynamics of the circulation in the Nordic Seas. The THC is found be crucially dependent on the parameterization of the small-scale vertical mixing, two types of which have been compared: The commonly used constant diffusivity and a, physically more plausible, stability-dependent parameterization. For constant diffusivity the circulation weakens when the equator-to-pole surface density difference is decreased, consonant with commonly held prejudices. However, for stability-dependent diffusivity the circulation is enhanced. This conclusion has been reached using two investigative techniques, viz. a scale analysis as well as a numerical zonally-averaged and equatorially symmetric THC model. However, if asymmetric flows are considered, the dynamics become more complex to interpret. It has, nevertheless, been concluded that when the degree of asymmetry of the surface-density distribution is taken to be fixed, the response of the circulation to changes of the surface-density distribution corresponds to that from the symmetric investigation.The studies of the Nordic Seas are mainly based on satellite-altimetric data providing Sea-Level Anomalies (SLAs). These are utilized to estimate the seasonal cycle as well as the inter-annual variability of the depth-integrated flows. The seasonal cycle is examined using the winter-to-summer difference of the barotropic flow, with focus on the entire region as well as on two sections extending from a common point in the central Norwegian Sea to Svinøy on the Norwegian coast and to the Faroe Islands, respectively. The total barotropic transport is estimated to be around 10 Sv larger during winter than in summer, of which 8 Sv are associated with the barotropic re-circulation gyre in the interior of the Norwegian Sea, the remainder being linked to the Atlantic inflow across the Iceland-Scotland Ridge. The inter-annual variability of the circulation in the Nordic Seas is investigated on the basis of a theoretical analysis permitting independent calculation of the barotropic flow along closed isobaths using SLA data as well as wind data. The barotropic flow based on SLA data is found to co-vary with the flow estimated using wind data.

  HÄR KAN DU HÄMTA AVHANDLINGEN I FULLTEXT. (följ länken till nästa sida)