Microwell devices for single-cell analyses

Detta är en avhandling från Stockholm : KTH

Sammanfattning: Powerful tools for detailed cellular studies are emerging, increasing the knowledge ofthe ultimate target of all drugs: the living cell. Today, cells are commonly analyzed inensembles, i.e. thousands of cells per sample, yielding results on the average responseof the cells. However, cellular heterogeneity implies the importance of studying howindividual cells respond, one by one, in order to learn more about drug targeting andcellular behavior. In vitro assays offering low volume sampling and rapid analysis in ahigh-throughput manner are of great interest in a wide range of single-cellapplications.This work presents a microwell device in silicon and glass, developed using standardmicrofabrication techniques. The chip was designed to allow flow-cytometric cellsorting, a controlled way of analyzing and sorting individual cells for dynamic cultureand clone formation, previously shown in larger multiwell plates only. Dependent onthe application, minor modifications to the original device were made resulting in agroup of microwell devices suitable for various applications. Leukemic cancer cellswere analyzed with regard to their clonogenic properties and a method forinvestigation of drug response of critical importance to predict long-term clinicaloutcome, is presented. Stem cells from human and mouse were maintainedpluripotent in a screening assay, also shown useful in studies on neural differentiation.For integrated liquid handling, a fluidic system was integrated onto the chip fordirected and controlled addition of reagents in various cell-based assays. The chip wasproduced in a slide format and used as an imaging tool for low-volume sampling withthe ability to run many samples in parallel, demonstrated in a protein-binding assay fora novel bispecific affinity protein. Moving from cells and proteins into geneticanalysis, a method for screening genes from clones in a rapid manner was shown bygene amplification and mutation analysis in individual wells. In summary, a microwelldevice with associated methods were developed and applied in a range of biologicalinvestigations, particularly interesting from a cell-heterogeneity perspective.