Simulations of cavitation - from the large vapour structures to the small bubble dynamics

Sammanfattning: Popular Abstract in Swedish Mycket få människor omkring oss vet innebörden av ordet kavitation, förutom de som såg filmen "The Hunt for Red October" och kan relatera kavitation till Sean Connery i en ubåt. Kavitation motsvarar bildandet av bubblor, som kan likna kokande vatten i en kastrull. Men den uppstår inte på grund av en hög temperatur utan på grund av ett lågt tryck. Den finns i de flesta tekniska anläggningar som innehåller vätska i rörelse. Problemet med kavitation är dess negativa konsekvenser. Till exempel orsakar den oljud vilket inte är onskvärt för en ubåt. Den kan också leda till förstörelse av ytor, vilket inte är onskvärt i en vattenturbin. Kavitation i vattenturbiner orsakar förändringar och instabilitet i strömningen, och implosion av bubblor. Detta resulterar i en minskning i effektivitet, vibrationer och erosion (skador på ytor). Kavitation kan undvikas om turbinen ställts tillräckligt låg, så att det statiska trycket är tillräckligt högt för att förhindra att vatten övergår till gasform. Men byggkostnaderna för en sådan låg inställning är mycket höga. Därför måste man hitta en kompromiss mellan motstridiga krav på en låg installationskostnad och undvikande av negativa effekter från kavitation. Kavitation är mycket komplex. En stor mängd forskning har gjorts under de senaste 30 åren för att förbättra förståelsen för detta fenomen. För att få mer kunskap om kavitation i vattenturbiner, kan man använda sig av numeriska modeller. Genom att lösa lämpliga ekvationer kan man beskriva hur kavitation börjar och utvecklas. Det finns modeller för varje specifik företeelse. Dock är kavitationsmodellering fortfarande mycket utmanande eftersom fenomenet leder till snabba variationer av strömingsegenskaper och samspelet mellan vatten, ånga och gas. Ångan som bildas vid kavitation kan uppträda i varierande storlek och form, från mikroskopiska sfäriska bubblor, till stora sammanhängande strukturer. Dessutom är strömningen turbulent. Alla dessa egenskaper kräver lämpliga modeller för att exakt förutsäga kaviterande strömningar. I detta arbete utförs beräkningar för att utvärdera resultaten av olika modeller. En ny flerskalig modell utvecklas och används på en kaviterande strömning kring en vingprofil. Den nya modellen omfattar både små sfäriska bubblor, stora icke-sfäriska ånga strukturer och övergången mellan dessa regimer. Det är mycket intressant att ha en modell som kan förutsäga hur dem minsta bubblorna transporteras till regioner med lågt statiskt tryck, där de växer och sen imploderar. Genom att mäta tryckvågen som släpps från bubblan, kan man förutse risken för att närliggande ytor ska skadas. Tack vare den förbättrade modellen, kan man förutse där kavitation orsakar skador. Denna kunskap kan i ett senare skede hjälpa till att utforma geometrier som minskar de negativa effekterna av kavitation. Särskild omsorg kan då tas, så att bubbelimplosionerna sker långt ifrån ytor. Detta skulle minimera skador på ytorna, och därmed minska underhållskostnaderna.

  KLICKA HÄR FÖR ATT SE AVHANDLINGEN I FULLTEXT. (PDF-format)