Short Proofs May Be Spacious : Understanding Space in Resolution

Detta är en avhandling från Stockholm : KTH

Sammanfattning: Om man ser på de bästa nu kända algoritmerna för att avgöra satisfierbarhet hos logiska formler så är de allra flesta baserade på den så kallade DPLL-metoden utökad med klausulinlärning. De två viktigaste gränssättande faktorerna för sådana algoritmer är hur mycket tid och minne de använder, och att förstå sig på detta är därför en fråga som har stor praktisk betydelse.Inom området beviskomplexitet svarar tids- och minnesåtgång mot längd och minne hos resolutionsbevis för formler i konjunktiv normalform (CNF-formler). En lång rad arbeten har studerat dessa mått och även jämfört dem med bredden av bevis, ett annat mått som visat sig höra nära samman med både längd och minne. Mer formellt är längden hos ett bevis antalet rader, dvs. klausuler, bredden är storleken av den största klausulen, och minnet är maximala antalet klausuler som man behöver komma ihåg samtidigt om man under bevisets gång bara får dra nya slutsatser från klausuler som finns sparade.För längd och bredd har man lyckats visa en rad starka resultat men förståelsen av måttet minne har lämnat mycket i övrigt att önska. Till exempel så är det känt att minnet som behövs för att bevisa en formel är minst lika stort som den nödvändiga bredden, men det har varit en öppen fråga om minne och bredd kan separeras eller om de två måtten mäter "samma sak" i den meningen att de alltid är asymptotiskt lika stora för en formel. Det har också varit okänt om det faktum att det finns ett kort bevis för en formel medför att formeln också kan bevisas i litet minne (motsvarande påstående är sant för längd jämfört med bredd) eller om det tvärtom kan vara så att längd och minne är "helt orelaterade" på så sätt att även korta bevis kan kräva maximal mängd minne.I denna avhandling presenterar vi först ett förenklat bevis av trade-off-resultatet för längd jämfört med minne i (Hertel och Pitassi 2007) och visar hur samma idéer kan användas för att visa ett par andra exponentiella avvägningar i relationerna mellan olika beviskomplexitetsmått för resolution.Sedan visar vi att det finns formler som kan bevisas i linjär längd och konstant bredd men som kräver en mängd minne som växer logaritmiskt i formelstorleken, vilket vi senare förbättrar till kvadratroten av formelstorleken. Dessa resultat separerar således minne och bredd. Genom att använda andra men besläktade idéer besvarar vi därefter frågan om hur minne och längd förhåller sig till varandra genom att separera dem på starkast möjliga sätt. Mer precist visar vi att det finns CNF-formler av storlek O(n) som har resolutionbevis i längd O(n) och bredd O(1) men som kräver minne minst Omega(n/log n). Det gemensamma temat för dessa resultat är att vi studerar formler som beskriver stenläggningsspel, eller pebblingspel, på riktade acykliska grafer. Vi bevisar undre gränser för det minne som behövs för den så kallade pebblingformeln över en graf uttryckt i det svart-vita pebblingpriset för grafen i fråga.Slutligen observerar vi att vår optimala separation av minne och längd i själva verket är ett specialfall av en mer generell sats. Låt F vara en CNF-formel och f:{0,1}^d->{0,1} en boolesk funktion. Ersätt varje variabel x i F med f(x_1, ..., x_d) och skriv om denna nya formel på naturligt sätt som en CNF-formel F[f]. Då gäller, givet att F och f har rätt egenskaper, att F[f] kan bevisas i resolution i väsentligen samma längd och bredd som F, men att den minimala mängd minne som behövs för F[f] är åtminstone lika stor som det minimala antalet variabler som måste förekomma samtidigt i ett bevis för F.

  HÄR KAN DU HÄMTA AVHANDLINGEN I FULLTEXT. (följ länken till nästa sida)