Modeling Carbon Nanotube Field Effect Transistors with Fixed and Suspended Nanotube Gates

Sammanfattning: Carbon nanotubes (CNT) exhibit a range of properties that make them well suited for nanoelectronic and nanoelectromechanical devices. One-dimensional field effect transistors based on single-walled CNTs have demonstrated excellent electrical characteristics and are competitive with silicon-based solutions, and oscillators based on suspended CNTs have been shown to work at gigahertz frequencies with Q-factors exceeding 10$^3$. In this thesis, I present a theoretical model describing the operation of a carbon nanotube field-effect transistor (CNTFET) with a static or mechanically active CNT gate. Theoretical modeling gives a remarkably good agreement with experimental measurements on CNT-gated CNTFETs, fabricated and characterised in the Atomic Physics group at University of Gothenburg, and provides an explanation for the steep sub-threshold slope and the short gate delay of the devices. With the help of the model it is demonstrated that a substantial improvement in gate delay time can be achieved by reducing the thickness of the gate dielectric. Furthermore, I show that utilizing the mechanical degree of freedom of a suspended gate CNT may lead to a sub-threshold slope smaller than the thermal 60 mV/decade limit. I present two designs of suspended CNTgated CNTFET, with doubly clamped or cantileved CNT gate. In the first design, the sub-threshold slope reaches 32 mV/decade, and in the second as low as 15 mV/decade at room temperature. In the presented CNTFET designs, the instantaneous deflection of suspended CNT is mapped by transistor drain current. I show that the sensitivity of the CNTFETs towards the motion of suspended CNT surpasses that of the conventional nanoscale displacement detection methods.

  Denna avhandling är EVENTUELLT nedladdningsbar som PDF. Kolla denna länk för att se om den går att ladda ner.